Perspectives of CAx-Technologies for Flexible Process Planning in Modern Production Environments

Tuesday, June 11th, 2013
Manufacturing Performance Days
Tampere, Finnland

Dr. Thomas Bobek
Fraunhofer Institute for Production Technology
Aachen, Germany
Contents

- Introduction of the Fraunhofer IPT
- Motivation
- State-of-the-Art
- CAx Developments at the Fraunhofer IPT
- Summary & Outlook
Production Engineering in Aachen

Prof. Dr.-Ing. Dr.-Ing. E.h. Dr. h.c. Dr. h.c. Fritz Klocke
Prof. Dr.-Ing. Christian Brecher
Prof. Dr.-Ing. Robert Schmitt
Prof. Dr.-Ing. Dipl.-Wirt. Ing. Günther Schuh
RWTH Aachen and Fraunhofer-Gesellschaft

Fraunhofer-Gesellschaft
- More than 80 institutes and facilities at 40 locations in Germany
- 20,000 employees
- Approx. € 1.8 billion research funds per year, € 1.5 billion through research contracts
- 3 institutes in Aachen

RWTH Aachen University
- Founded in 1870
- 35,800 students

Faculty of Mechanical Engineering
- 10,100 students (incl. 2,200 first year students)
- 62 professors
- 2,600 employees
- 140 graduates per year
Production Technology in Aachen

Laboratory for Machine Tools and Production Engineering (WZL)
- RWTH Aachen University institute
- Founded in 1906
- 740 employees
- 16,000 m² offices and laboratories

Fraunhofer Institute for Production Technology IPT
- Fraunhofer-Gesellschaft institute
- Founded in 1980
- 380 employees
- 3,000 m² offices and laboratories
- Certified to DIN EN ISO 9001:2008
Organizational Chart

<table>
<thead>
<tr>
<th>Process Technology</th>
<th>Production Machines</th>
<th>Production Quality and Metrology</th>
<th>Technology Management</th>
<th>Fraunhofer Project Group Mechatronic Systems Design, Paderborn</th>
<th>Fraunhofer-Center for Manufacturing Innovation CMI, Boston/USA</th>
<th>Administration and Technical Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Laser material processing</td>
<td>– Precision machines and automation technology</td>
<td>– Production metrology</td>
<td>– Technology Planning</td>
<td>– Control engineering</td>
<td>– Fiber optics and optoelectronic components</td>
<td>– Technical Services</td>
</tr>
<tr>
<td>– CAx technologies</td>
<td></td>
<td>– Technical Purchasing</td>
<td>– Software engineering</td>
<td></td>
<td>– Mechanical micro-machining</td>
<td>– Public Relations</td>
</tr>
<tr>
<td>– Fine machining and optics</td>
<td></td>
<td></td>
<td></td>
<td>Prof. A. Trächtler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head of the institute</td>
<td></td>
<td></td>
<td></td>
<td>Prof. J. Gausemeier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. F. Klocke</td>
<td></td>
<td></td>
<td></td>
<td>Prof. W. Schäfer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. C. Brecher</td>
<td>Prof. R. Schmitt</td>
<td>Prof. G. Schuh</td>
<td>Dipl.-Ing. S. Bichmann</td>
<td>Dipl.-Ing. C. Henke</td>
<td>Dipl.-Ing. C. Wenzel</td>
<td>Prof. A. Sharon</td>
</tr>
<tr>
<td>Dr.-Ing. T. Bergs</td>
<td>Dipl.-Ing. C. Hammers</td>
<td></td>
<td></td>
<td>Dr. rer. nat. M. Meyer</td>
<td></td>
<td>Dr.-Ing. T. Bergs</td>
</tr>
<tr>
<td>Dipl.-Ing. L. Glasmacher</td>
<td>Dipl.-Ing. M. Große</td>
<td></td>
<td></td>
<td>Dipl.-Ing. M. Große</td>
<td></td>
<td>Head of Administration</td>
</tr>
<tr>
<td>Dr.-Ing. O. Dambon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>J. von Heel</td>
</tr>
<tr>
<td>51 scientists</td>
<td>29 scientists</td>
<td>17 scientists</td>
<td>15 scientists</td>
<td>15 scientists</td>
<td>14 employees</td>
<td>22 administrative staff</td>
</tr>
<tr>
<td>17 technicians</td>
<td>16 technicians</td>
<td></td>
<td>1 mathematical technician</td>
<td>2 technicians</td>
<td></td>
<td>34 technicians</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 administrative staff</td>
<td></td>
<td>7 trainees</td>
</tr>
</tbody>
</table>
Fraunhofer IPT
Process Technology

Fine Machining and Optics
- UP-Diamondturning and -milling, precision-grinding and -polishing, high precision glass molding, FE-process simulation, PVD tool coating

High Performance Cutting
- Multi-axis milling, precision-milling, and -turning, process- and system-modeling

Laser Material Processing
- Laser-based joining and surface structuring, laser-based machining and surface treatment, additive component manufacture and repair

CAx-Technologies
- CAx-Framework, Development of CAM-tools, NC-Simulation, NC-Code optimization and analysis
CAx-Technologies
Department at Fraunhofer IPT

»CAx-Framework« and CAx-Module Development

Milling / Grinding
Laser Material Deposition
Ultra-Precision Machining
Metrology
Laser Ablation

Analysis and Optimization

NC Data Analysis and Optimization
CAX Process Chain Evaluation

Source: Fraunhofer IPT / CAx-Technologies 2013
Contents

- Introduction of the Fraunhofer IPT
- Motivation
- State-of-the Art
- CAx Developments at the Fraunhofer IPT
- Summary & Outlook
Motivation
The ideal CAx-System

- What are features of an ideal CAx-System?
 - The model design is created once and all people involved in subsequent production processes can extract the required data
 - All process know-how gained during development and production ramp-up is preserved
 - Metrology data can be referenced to design models
 - In repair processes, workpiece defects are detected semi-automatically based on metrology data; repair processes can be calculated from this
 - Analysis of part failure during operation allows to identify production faults (ideally part specific)
 - ...

Motivation
Production Data in a Product Life Cycle

Data
- Constructions-Data in 2D/3D, Metadata
- CAM-Strategies and process parameter
- Machine- & Control-daten
- Optimized NC-Daten

Product-Life Cycle
- Design
- Process Planning and Simulation

Demands: Availability of Process and Product data throughout the whole life cycle
- Data access, analysis- and evaluation methods
- Optimized data handling along the product life cycle

Repair planning und Simulation
- Product qualification
- CAx-Repair-Process chain
- Adaptive repair strategies
- current workpiece shape
- inspection data

Operation & Inspection
- Monitoring during operation
- QA data

Processing
- Machine-NC-Data
- Process-monitoring

Archive /
Learn for Future
- Clamping / Referencing

Source: Fraunhofer IPT / CAx-Technologies 2013
Contents

- Introduction of the Fraunhofer IPT
- Motivation
- State-of-the Art
- CAx Developments at the Fraunhofer IPT
- Summary & Outlook
State-of-the-Art

Current Situation in Production Environments

- **Data Driven Process Chains**
 - All relevant production data stored and exchanged electronically

- **Several Heterogeneous Sources of Data**
 - Process Planning \(\rightarrow\) Process Parameter
 - QA Systems \(\rightarrow\) Metrology Data
 - CAD/CAM Software Tools \(\rightarrow\) NC Data
 - Monitoring Systems \(\rightarrow\) Machining Data

- **Data transfer / Interfaces**
 - Different protocols between different systems

- **Know-how Preservation**
 - Connection to databases (SQL, Postgres, …)

- **Big Data**
 - Increasing amount of data, \(\rightarrow\) scalable
 (2 Exabytes of data in 2012 generated by industries worldwide)

CAD/CAM, Machining and Metrology Examples
Source: Siemens PLM, Starrag, Werth
State-of-the-Art
Current Situation: PLM-Systems

Approaches in respect to connectivity and Big Data:
- Dassault Systèmes:
 - Exalead (search functionality)
 - Netvibes (Social Networking)
 - 3DLive (visualizing)
- Siemens PLM Software:
 - Teamcenter
 - Active Workplace (search functionality)
 - HD-PLM (visualizing)

Companies are often not aware of the possibilities
- of the benefits of connected CAM/PLM Systems
- of advantages of database systems in their production environment
- how to generate economic value from those systems
State-of-the-Art
CAD/CAM Systems

- **Popular Systems in Europe:**
 - Siemens: PLM: Siemens NX
 - Autodesk: AutoCAD / InventorCAM
 - Dassault: Catia V5/V6
 - PTC: ProEngineer

- **Strong in mainstream CAD / CAM applications**
- **Connection to PLM systems possible**

- **But:**
 - No flexible integration of custom processes
 - No established standard for data exchange across the borders of each ‘ecosystem’

Source: Siemens PLM, Dassault Systemes
State-of-the-Art
Current Situation: Data Formats

- Main Geometry Formats:
 - IGES (Version 5 ANSI standard since 1996)
 - ASCII-based → large file sizes
 - Almost standard in machining environments for geometry definition and exchange
 - STEP / STEP-NC (DIN EN ISO 10303)
 - Allows flexible definition of data structures that can contain additional production relevant data
 - Basically the whole product lifecycle can be represented in STEP data structures
 - No widespread acceptance of this format in the machining community
 - DXF
 - Long tradition, often labeled industry standard
 - Not established in machining community
 - Other (STL, JT, ...)
 - Proprietary formats / company or software specific
State-of-the-Art

Data Management

- Centralized document server for technical content (e.g. Siemens Teamcenter)
 - Convenient data access (e.g. CIFS/NFS and/or API)
 - Implementation of rights management for different users / roles

- Revisions / Versioning
 - Ensure the usage of current version of the design model
 - Ability for switching to older versions
 - Check-out of documents and simultaneous blocking

- Provide Comprehensive Analysis Tools through centralized Data Administration
 - FEM-Analysis
 - Model Quality Analysis
 - Metrology Evaluation and Comparison with Data Models
 - Cost calculations and Review of Processes Chains

- Usage of Big-Data Tools for reliable and scalable Data Management
Contents

- Introduction of the Fraunhofer IPT
- Motivation
- State-of-the Art
- CAX Developments at the Fraunhofer IPT
- Outlook
Areas of Action

“CAx-Framework”
- Flexible platform for integration of CAx modules
 - CAD, Technology Databases
 - Machining and laser applications
 - Ultra precision manufacturing
 - Metrology and process monitoring
 - Process and machine simulation modules

CAx-Modules
- Implementation of new production-technological methods in prototype software modules
- Strategic cooperation with industrial customers and development partners with the objective of product commercialization

NC Data Optimization
- Software “NCProfiler” for analysis and optimization of NC data
 - Simulation of NC-data within kinematics and controller specific context
 - Check of critical toolpath areas
 - Broad postprocessor functionality

Source: Fraunhofer IPT / CAx-Technologies 2013
CAx Developments at the Fraunhofer IPT
»CAx-Framework« and »NCProfiler«

» CAx-Framework «

Data
- CAD-Model workpiece

Technology parameter
- process parameter
- machine configurations
- system specs

CAM-Module
- Intuitive user interfaces
- Application specific toolpath strategies
- toolpath calculation

Simulation-module

Verification

» NCProfiler «

New NC-Code

Existant NC-Code

Optimized NC-Code

NC-Data-analysis and optimization
- Analysis and Optimization of NC-Data
 - Kinematics
 - Dynamics
 - Machine Control

Postprocessor
- Calculation of machine-specific NC-Code

Optimized Machine NC-Code

Source: Fraunhofer IPT / CAx-Technologies 2013
CAx Developments at the Fraunhofer IPT
CAD Model Quality

CAD Model

Design Optimization

CAM Planning

Inspection Planning

→ CAD Model Quality is very important!

Source: Fraunhofer IPT / CAx-Technologies 2013

© WZL/Fraunhofer IPT
CAx Developments at the Fraunhofer IPT
CAM Planning for Adaptive Machining

CAD model

Geometric comparison with tolerances

Define material pre-position

Calculate tool position on material

Machining process → Step 1

Machining process → Step 2

Machining process → Step 3

Simulation/Verifications
→ Material removal
→ Machine kinematics

Toolpath calculation
→ Algorithms for adaptive machining

Process parameters
→ Feed and speed
→ Cutting loads
→ Surface quality

Next iteration

Calculated NC data

Measuring data input

Measuring

Calculation of cutting forces

Source: Fraunhofer IPT / CAx-Technologies 2013
CAx Developments at the Fraunhofer IPT
»The Aachen Process Chain: Repair of a Gas Turbine Blade«

»IPT-CAx-Framework« – Data-Consistent Software-Platform

Geometry Acquisition
Preparation Milling
Machine-integrated optical Scanning
Milling Machine
Laser Material Deposition
Laser Processing Machine
Geometry Acquisition
Maschine-integrated optical Scanning
Recontouring by adaptive Milling / Grinding
Milling Machine
Universal Clamping Technique

Repaired Gasturbine-Blade

Source: Fraunhofer IPT / CAx-Technologies 2013
Example for large file sizes: Metrology Data

- Objective: Reduction of footprint / memory consumption
 - Optimization of data structures
 - Removal of metrology data within specs: Only deviations are recorded long-term
 - Transformation into geometric primitives where possible

- Example Computer Tomography
 - Automated detection of defective regions and storing of the related metrology data

- Decision if efficient storage (few accesses per time) or indexing (fast access - frequent usage) is more appropriate

Source: Fraunhofer IPT / CAx-Technologies 2013
Contents

- Introduction of the Fraunhofer IPT
- Motivation
- State-of-the Art
- CAx Developments at the Fraunhofer IPT
- Summary & Outlook
Summary and Outlook

- Consideration of the whole process chain is necessary instead of optimizing single processes.
- Handling of flexible process chains within CAx-systems with standardized interfaces.
- Consistent data flow during the whole process chain increases productivity.
- Big Data issues are becoming more important in the near future.

Dr. Thomas Bobek
CAx-Technologies
Fraunhofer-Institut for Production Technology IPT
Steinbachstraße 17, 52074 Aachen
Tel.: +49 241 8904-149
Fax: +49 241 8904-6149
E-Mail: thomas.bobek@ipt.fraunhofer.de
THANK YOU FOR YOUR ATTENTION!